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Abstract

A variational method of constructing a spatial structured grid composed of hexahedral cells is presented. The method
executes a minimization of the variational functional. The integrand of the functional is a ratio of the orthogonal invar-
iants. The functional depends on two metrics. One metric is induced by a curvilinear mesh generated in the physical
domain and the other control metric, given in the canonical domain, is responsible for an additional cell shape control,
for instance, for condensing the coordinate surfaces and orthogonalization of the grid lines towards the domain boundary.
Generally, defining the control metric allows to generate an arbitrary given non-folded mesh in the physical domain. For
every cell, the functional is discretized on ten tetrahedra forming two dodecahedrons with the same vertices which span the
hexahedral cell. The discrete functional possesses an infinite barrier on the boundary of the set of non-folded dodecahedral
cells that ensures the construction of the non-folded grid composed of such cells. In the most practical cases the hexahedral
grid with the same nodes is non-folded as well. The method of boundary nodes redistribution is considered. Examples of
the grid construction are reported.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The first variational grid generation methods were suggested for the one-dimensional case in [1] and for the
two-dimensional one in [2,3]. Henceforth, the developing of various functionals was performed with purpose
to construct non-folded meshes and to execute an additional control for the coordinate lines, see [4–16]. The
problem of generating non-folded meshes, composed of quadrilateral cells, in an arbitrary 2D domain was
solved in [9] where the variational barrier method was developed. In [17], it is used a functional being the com-
bination of the terms being responsible for the mesh uniformity and orthogonality. In [3,4], the second control
metric in the parametric domain was introduced with purpose to include an additional control for grid lines
behavior and the algorithm of the quasi-orthogonal mesh construction was suggested. In [18,19], the superpo-
sition of the quasi-isometric and conformal mappings was considered. In [20], the composition of the grid con-
trol map and the inverse of the harmonic map was applied. In [6], the functional that measures a grid
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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smoothness was considered and applied jointly with the functionals of orthogonality and adaptivity. Other
type functionals (length, uniformity, etc.) are reported, for instance, in [7,12–14]. In [21] (see also [22]), it
was suggested an universal functional describing all classes of invertible discrete transformations of the 2D
parametric domain to the physical one.

The 3D case turned out much harder than 2D. First, it concerns with the search of a transformation
providing a homeomorphic mapping of the unit parametric cube onto an arbitrary domain. For instance,
it is unknown yet whether a harmonic mapping (well-studied for 2D transformations, see, e.g. [23]) of an
arbitrary domain onto a convex domain (unit cube) with a given one-to-one mapping between the bound-
aries is always a homeomorphism. There is an example (see [24]) when, subject to some conditions imposed
on the boundaries, the harmonic mapping is not a homeomorphism. A study on seeking conditions provid-
ing the mapping is a global homeomorphism was executed in [25–27]. Second, for a hexahedral cell (also
called a ruled cell) with ruled faces there is no a condition, being simultaneously a necessary and sufficient
one, providing non-degeneracy of the cell [28,29]. In [30], the method of the 3D adaptive moving mesh con-
struction was developed when it is minimized the dimensional functional of smoothness suggested in [11]. In
[31], it is considered the method based on optimization of an objective function, being the shape-quality
measure for hexahedral elements, which is used to built unstructured hexahedral meshes. In [32,33], hexa-
hedral grids are constructed by minimizing the functional being the sum of the uniformity and orthogonality
functionals.

When constructing spatial meshes, the problem of additional control for coordinate surfaces is of particular
importance. Modeling of the aerodynamical problems requires to condense the coordinate surfaces and
orthogonalize the coordinate lines towards the domain boundary to resolve the boundary layers. When cal-
culating the problems with an unstable interphase boundary of two media, its shape bends significantly
and it is not easy to generate the mesh in subdomains of instability. There is a need to extend the mesh control
methods, developed for the 2D problems, to the spatial case. The idea of using the second control metric with
this purpose was proposed in [34].

In the paper, we apply the idea of using the control metric of [34] for a variational method of constructing a
spatial structured grid composed of hexahedral cells. In the method a variational functional is minimized. The
integrand of the functional is a ratio of the orthogonal invariants. The functional depends on two metrics. One
metric is induced by a curvilinear mesh generated in the physical domain and the other control metric, given in
the canonical domain, is responsible for an additional cell shape control. Generally, defining the control metric
allows to generate an arbitrary given non-folded mesh in the physical domain.

The outline of the paper is as follows: Section 2 gives the derivation of the functional and two formulations
of the variational problem of the grid construction. Section 3 presents the property of the 3D functional to
attain an absolute minimum for a given mesh and the Euler–Lagrange equations for the functional are
considered. Section 4 discusses non-degeneracy conditions for a hexahedral cell. It is expressed an idea to sub-
stitute a ruled cell for two dodecahedrons, each consists of five tetrahedra, and to apply the non-degeneracy
condition for the 10 tetrahedra. Section 5 discusses the way of discretizing the functional. The minimizing pro-
cedure for the discrete functional is described in Section 6 and computational formulae are given in Section 7.
In Section 8, the barrier property of the discrete functional is discussed. The method of boundary nodes redis-
tribution is presented in Section 9. Section 10 describes the way of condensing the coordinate surfaces and
orthogonalizing the grid lines towards the boundary. Section 11 presents the algorithm of obtaining an initial
non-folded mesh. Two examples of the grid construction are reported in Section 12. Section 13 discusses other
functionals.

2. Variational functional

We give a derivation of the functional using the idea of [34]. Consider a smooth invertible mapping
xðXÞ : Rn ! Rn of the canonical domain in space of variables X = (X1, . . . ,Xn) to the physical domain in space
of variables x = (x1, . . . ,xn) with the Jacobian matrix ai

j ¼ oxi=oX j. Consider also two auxiliary smooth invert-
ible mappings xðnÞ;XðnÞ : Rn ! Rn of the parametric domain, the unit cube 0 6 n1, . . . ,nn

6 1, in space of
variables n = (n1, . . . ,nn) to the physical and canonical domains, respectively, with the Jacobian matrices
bi

j ¼ oxi=onj and ci
j ¼ oX i=onj (see Fig. 1 for the case n = 3).
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Fig. 1. Spatial case n = 3.
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The mappings induce the metric tensors h, g, G which read
h ¼ a>a; g ¼ b>b; G ¼ c>c;
where a>, b>, and c> are the transposed matrices. Since b = ac and, therefore, a = bc�1, we have for the metric h
h ¼ a>a ¼ ðc�1Þ>b>bc�1.
Let us write the characteristic equation for the metric h
detðh� kIÞ ¼ 0;
where I is the identity matrix. Substitution of h expressed in terms of the matrices b, c yields
detðb>b� kc>cÞ ¼ 0
or in terms of the metrics g, G
detðg � kGÞ ¼ det G detðG�1g � kIÞ ¼ 0.
The mapping X(n) is invertible, therefore, detG 6¼ 0 and the matrix equation for determining the eigenvalues
ki, i = 1, . . . ,n, takes the form
detðG�1g � kIÞ ¼ 0.
It can be rewritten as
kn þ I1k
n�1 þ � � � þ In ¼ 0. ð1Þ
The matrix G�1g is symmetric and positive definite, therefore, the algebraic equation (1) has n real roots ki > 0.
The coefficients I1, . . . , In are known as the orthogonal invariants of the metric h because they do not change
under orthogonal transformations of the coordinate system. In particular
I1 ¼ trðG�1gÞ ¼
Xn

i¼1

hii ¼
Xn

i¼1

ki; In ¼ detðG�1gÞ ¼ k1 . . . kn. ð2Þ
The function of the invariants Ii is also an invariant.
We will use two formulations of the variational problem of the grid construction.
Formulation 1. The grid construction problem is considered as a discrete implementation of a smooth one-

to-one mapping xðXÞ : Rn ! Rn of the canonical domain to the physical domain provided that the boundary
correspondence is given. To this end, one minimizes a functional being the integral of a function depending on
the metric invariants.

Consider the ratio of the invariant I1 to In raised to proper power so as to obtain a non-dimensional
function
E ¼ 1

nn=2

In=2
1

I1=2
n

¼ 1

nn=2

ðtrðG�1gÞÞn=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðG�1gÞ

q ¼ 1

nn=2

ðtrðG�1gÞÞn=2
ffiffiffiffiffiffiffiffiffiffiffi
det G
p

ffiffiffiffiffiffiffiffiffiffi
det g
p . ð3Þ
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It is easily seen that the function E is invariant to invertible orthogonal transformations and homothetic dila-
tation of the coordinate systems x and X. The meaning of the normalization factor n�n/2 will be clarified in
Section 3. The idea of using the invariant-to-invariant ratio in constructing the functionals was proposed in
[11].

Consider the following functional for the invariant E, being the integral over the n-dimensional unit cube,
[34]
DðxðnÞÞ ¼
Z 1

0

E dn1 � � � dnn ¼ 1

nn=2

Z 1

0

ðtrðG�1gÞÞn=2
ffiffiffiffiffiffiffiffiffiffiffi
det G
p

ffiffiffiffiffiffiffiffiffiffi
det g
p dn1 � � � dnn. ð4Þ
In [34], this functional was derived by using the conformal invariants. The functional (4) is the invariant to the
above transformations of the coordinates x and X. But (4) is not an invariant to dilatation of the coordinates n

due to emerging the Jacobian of transformation ðdet ~gÞ1=2. Note that similar functionals were applied in [8,11].
In the case of n = 2, when the metric G is Euclidian (Gij = dij, where dij is the Kronecker delta) and

x = (x,y), n = (n,g), (4) turns into the functional of smoothness proposed in [6](see also [7,12,13])
D ¼ 1

2

Z 1

0

x2
n þ y2

n þ x2
g þ y2

g

xnyg � xgyn

dndg. ð5Þ
When G is the Riemannian metric, from (4) one obtains the functional [21]
D ¼ 1

2

Z 1

0

x2
nG22 � 2xnxgG12 þ x2

gG11 þ y2
nG22 � 2ynygG12 þ y2

gG11

ðxnyg � xgynÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11G22 � G2

12

q dndg ð6Þ
and the function E is called the energy density of the mapping. If in the denominator of (6) to remove the
Jacobian xnyg � xgyn, we get the functional suggested in [3].

The formulation 1 is applied to derive the variational functional (4). In practical implementation, some-
times it is convenient to use one more variational formulation.

Formulation 2. It is required to find a smooth one-to-one mapping xðnÞ : Rn ! Rn of the parametric domain
(unit cube) to the physical domain provided that the boundary correspondence is given. The functions x(n),
executing the mapping, are sought while minimizing the functional (4). Here Gij(n) are the elements of a sym-
metric positive definite matrix given at every point of the parametric cube.

As well as in the formulation 1 we introduce the second parametrization, i.e., dependence X(n). However,
we need not consider the mapping of the canonical domain. For instance, the metric elements Gij may be
defined via the transformation of a cell in parametric space to the given cell in space X. Meantime it does
not matter what it is a union of all cells in X. In 2D, such a formulation was applied in [21,22]. Another
way is to specify directly the metric elements Gij imposing some conditions on the mesh, see [5,35,36].
3. Property of 3D functional and Euler–Lagrange equations

In the spatial case n = 3 with coordinates x = (x,y,z), X = (X,Y,Z), n = (n,g,f), the functional (4) reads
D ¼
Z 1

0

E dndgdf ¼ 1

33=2

Z 1

0

ðtrðG�1gÞÞ3=2
ffiffiffiffiffiffiffiffiffiffiffi
det G
p

ffiffiffiffiffiffiffiffiffiffi
det g
p dndgdf. ð7Þ
Here
trðG�1gÞ ¼ Gijgji ¼ G11g11 þ G22g22 þ G33g33 þ 2G12g12 þ 2G13g13 þ 2G23g23;
Gij are the elements of the inverse matrix G�1 (contravariant tensor) and the standard summation convention
is applied. At a point in space x with the coordinates r = (x,y,z), the elements of the metric tensor g are
g11 ¼ r2
n; g22 ¼ r2

g; g33 ¼ r2
f ; g12 ¼ ðrn � rgÞ; g13 ¼ ðrn � rfÞ; g23 ¼ ðrg � rfÞ ð8Þ
and the elements of the metric tensor G at a point in space X with the coordinates ~r ¼ ðX ; Y ; ZÞ are defined
analogously.



724 B.N. Azarenok / Journal of Computational Physics 218 (2006) 720–747
Recalling (2) we rewrite (3) in terms of the eigenvalues of the matrix G�1g
Eðk1; k2; k3Þ ¼
1

33=2

ðk1 þ k2 þ k3Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p .
Taking into account the general inequality for the arithmetic mean and geometric mean of arbitrary positive
numbers q1, . . . ,qn
1

n

Xn

i¼1

qi P
Yn

i¼1

qi

 !1=n
and substituting ki in it (recall that all ki > 0), we obtain
1

3
ðk1 þ k2 þ k3ÞP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

3
p

and immediately get that E P 1. The necessary condition for a minimum of E to attain is
oE
oki
¼ 0; i ¼ 1; 2; 3.
Differentiating E yields three relations with respect to ki
2k1 � k2 � k3 ¼ 0; 2k2 � k1 � k3 ¼ 0; 2k3 � k1 � k2 ¼ 0.
Combining by pairs these relations, we find that the minimum of E is attained subject to k1 = k2 = k3 and its
value is Emin = 1. Now it is seen why the normalization factor in (3) is defined equal n�n/2.

Let a smooth invertible mapping x(n) with the metric g be given. Defining G = g at every point of the para-
metric cube, in (7) we have that the function E ” 1. Hence, the absolute minimum of the functional D equal 1 is
attained. We conclude that an arbitrary smooth invertible mapping x(n) may be produced by minimizing the
functional (7) with a given metric G. Thus, defining the control metric G allows to control the metric g or, in
other words, to govern the coordinate surfaces in the physical domain. That is why, the functional (7) may be
called universal by analogy with the term used in [35] with respect to the functional of [3] and (6).

The functional (7) is non-convex and in domains of complicated geometry there can be several stationary
points when the absolute minimum of the functional is not attained. The non-uniqueness of the solution of the
minimization problem for the functionals (5) and (6) was discussed in [35,37].

The Euler–Lagrange equations for (7) are the system of nonlinear differential equations:
o

on
Exn
þ o

og
Exg þ

o

of
Exf
¼ 0;

o

on
Eyn
þ o

og
Eyg
þ o

of
Eyf
¼ 0;

o

on
Ezn
þ o

og
Ezg þ

o

of
Ezf
¼ 0;
where E(rn, rg, rf) is of very complicated form and to derive it one should write the elements gij in terms of
the derivatives with respect to x, y, z via (8) and substitute them in the integrand of (7). Note that the ele-
ments of the covariant tensor Gij (and contravariant tensor Gij as well) will be involved in the coefficients of
this system.

4. Non-degeneracy conditions for a cell

In the paper, we discuss the grids composed of hexahedral cells. Non-degeneracy of a grid implies that its
every element is non-folded. Consider a hexahedral cell in space R3 of the variables x, y, z, see Fig. 2(a), which
is specified via the trilinear transformation of the unit cube I3 = {(n,g,f): 0 6 n,g,f 6 1} from parametric
space (also called the isoparametric mapping for hexahedral finite elements)
r ¼ w1 þ w2nþ w4gþ w5fþ w3ngþ w6nfþ w8gfþ w7ngf; ð9Þ
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Fig. 2. Hexahedral cell (a) and two dodecahedrons of the first (b) and second (c) type with the same vertices.
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where the vectors wi are
w1 ¼ r1; w2 ¼ r2 � r1; w3 ¼ r3 � r2 � r4 þ r1; w4 ¼ r4 � r1; w5 ¼ r5 � r1;

w6 ¼ r6 � r2 � r5 þ r1; w7 ¼ r7 � r3 � r6 � r8 þ r2 þ r4 þ r5 � r1; w8 ¼ r8 � r4 � r2 þ r1
and ri = (x,y,z)i are the coordinates of the cell vertex.
The ruled cell in R3 is rather a complicated object in contrast to its analogy in R2, the quadrilateral cell. In

the planar case to check cell non-degeneracy it is sufficient to find the value of the Jacobian J of the bilinear
mapping, which transforms the unit parametric square to the quadrilateral cell, at four vertices of the cell.
Saying a ‘‘non-folded cell’’ one implies positiveness of J at any point of the cell. In 2D, J is a linear function
of coordinates within the cell. Therefore, positiveness of J at four vertices of the quadrilateral cell implies pos-
itiveness of J in the cell. In 3D, the Jacobian of the trilinear mapping (9) can be represented as the triple scalar
product
J ¼ rn � ðrg � rfÞ;

where the derivatives are
rn ¼ w2 þ w3gþ w6fþ w7gf; rg ¼ w4 þ w3nþ w8fþ w7nf; rf ¼ w5 þ w6nþ w8gþ w7ng.
The Jacobian is a polynomial of fourth degree depending on three variables n, g, f (maximum second degree of
each) [28]. By present there is unknown a condition, being simultaneously a necessary and sufficient one, using
which one may definitely say whether the ruled cell is inverted or not. One of the first investigations of this mat-
ter was executed in [38]. The most detail analysis was employed in [28,29] where it was suggested a number of
necessary and sufficient non-degeneracy conditions and a numerical procedure for checking a cell if the former
fails to give a definite answer. In [39], it was considered a numerical algorithm for checking invertibility for
hexahedral finite elements when the isoparametric mapping is decomposed into a linear and nonlinear part.

Instead of the ruled cell, consider two dodecahedrons of the first and second type depicted in Fig. 2(b) and (c)
with the same vertices. Each dodecahedron consists of the five tetrahedra: four corner ones and one internal. The
trilinear mapping (9) is replaced by a set of linear transformations of the basic tetrahedra in space n, g, f to cor-
responding tetrahedra composing two dodecahedrons in space x, y, z. The unit cube in Fig. 3(a) is partitioned
into 5 basic tetrahedra by two ways. The basic tetrahedra are the 8 corner ones (see, e.g. tetrahedron T1245 in
Fig. 3(b)) and 2 internal ones (see, e.g. the tetrahedron T2457 in Fig. 3(c)). When constructing the discrete map-
ping x(n) we will ensure non-degeneracy of the 10 tetrahedrons composing the first and second dodecahedrons
for each hexahedral cell. Thus, the non-degeneracy condition for the grid composed of dodecahedral cells of the
first or second kind may be written in the form of inequalities, which will be applied in our method,
½V m�n > 0; m ¼ 1; 2; . . . ; 10; n ¼ 1; 2; . . . ;Nc;
where Vm is the algebraic volume of the mth tetrahedron in the nth cell (m = 1,2, . . . , 8 corresponds to the cor-
ner tetrahedra and m = 9, 10 to internal), Nc is the number of the ruled cells. This condition may be rewritten
in terms of Jm for the linear transformation of the basic tetrahedron since Jm = 6Vm. Note that at the 8 corner
points (cell vertices) Jm is equal to J for (9) at these points.
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Fig. 3. In parametric space, unit cube (a) is partitioned into five basic tetrahedrons: four corner ones, like T1245 (b), and one internal T2457

(c). It is used two such partitions, see Fig. 2(b) and (c).
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The non-degeneracy condition based on positiveness of the algebraic volume of only the 8 corner tetrahe-
drons does not prevent of folding both the hexahedral and dodecahedral cell. In [10], it was considered a counter-
example of the cubic cell deformation. If to rotate the upper cube face about its center through 180�, we get a
cell depicted in Fig. 4. The cell is inverted, meanwhile all the 8 corner tetrahedra have a positive algebraic vol-
ume. Thus, this condition does not prevent the cell of twisting. On the other hand the use of the 10 tetrahe-
drons restricts the angle of rotation by 90�. At 90�, the both internal tetrahedrons degenerate because in each
one all the four vertices lie in one plane. Thus, the latter is a more reliable condition.

Next example demonstrates a difference between the sets of non-folded hexahedral and dodecahedral cells.
In Table 1, the node coordinates of a hexahedron are given. This cell depicted in Fig. 5(a) and (b) is non-
folded. Meanwhile the first dodecahedron has self-intersecting faces, because the internal tetrahedron T2457
1

2
3

4

5

67

8

Fig. 4. Inverted cell with positive algebraic volume of 8 corner tetrahedra.

Table 1
Node coordinates

1 2 3 4 5 6 7 8

x 0.000 0.141 0.106 �0.037 0.293 0.446 0.072 �0.073
y 0.000 �0.063 �0.144 �0.081 �0.208 �0.263 �0.225 �0.160
z 0.000 0.000 0.252 0.252 0.038 0.038 0.288 0.288

Fig. 5. Non-degenerate ruled cell, two views (a) and (b), and corresponding degenerate dodecahedron (c). In it, the tetrahedron T2457 is
inverted.
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is inverted (Jacobian J T 2457
¼ �0:00155), see Fig. 5(c). Note that the necessary condition for a ruled cell to be

non-folded includes the following inequality, which was reported to the author by Ushakova:
Table
Non-d

1st exp
data

2nd ex

In the
a In
V 9 þ V 10 > �
X8

m¼1

V m.
It may be readily derived from the formula for the hexahedron volume Vh [28]
V h ¼
1

2

X10

m¼1

V m.
This condition allows for a non-folded ruled cell to have at least one inverted internal tetrahedron in the cor-
responding dodecahedrons.

To gain a certain insight on the width (or conversely narrowness) of the non-degeneracy condition based on
positiveness of the tetrahedra volume, we executed numerical experiments following mainly [28,29]. The hexa-
hedron vertices are randomly generated in the interval (0,1) in each space direction. The sampling consists of
107 hexahedrons. In the first experiment, at first, the sign of the algebraic volume for the 8 corner tetrahedra is
checked. It is a necessary condition, that is why the cells not satisfying it are rejected. We call it C0 and the
remained number of cells is given in the second column of Table 2. Below, the similar data of [28,29] is pre-
sented. The condition C0 was also applied in a numerical experiment in [38]. Afterward, we check J of the
trilinear mapping in the midpoint of each cell edge, in the midpoint of each cell face, and in the midpoint
of the cell. It is also a necessary condition and we call it NC1. Further J is checked on the cell edges. Since
on the edge, J is a quadratic function of one parameter n, g, or f, then knowing its value at the midpoint
and end-points one easily determines whether J takes a negative value within the edge. We will describe this
check. Let the value of J(n) be given at the points n ¼ 0; 1

2
; 1 denoted by J0, J1/2, J1, respectively. If at least one

of these values is negative, then the cell is rejected. For the quadratic function
J ¼ an2 þ bnþ c;
the coefficients are
a ¼ 2ðJ 0 þ J 1Þ � 4J 1=2; b ¼ 4J 1=2 � J 1 � 3J 0; c ¼ J 0.
We perform the following check:

(1) if a < 0, then J > 0 within the segment n 2 [0,1];
(2) if a > 0, then the minimal value is determined via Jn = 2an + b = 0 and the minima point is nmin =
�b/2a;

(3) if nmin 2 [0, 1], then Jmin = �0.25b2/a + c and the sign of Jmin is checked;
(4) if nmin 62 [0, 1], then J > 0 within the segment n 2 [0, 1].

This necessary condition is called NC2. NC3 is the check of J on the segments joining the midpoints of the
opposite edges of each face (12 segments) and on the segments joining the midpoints of the faces (3 segments).
This check is executed analogously to NC2. The next condition NC4 is the check of J on the segments joining
the points of the opposite faces when in parametric space each cube face is partitioned into 10 · 10 squares and
it is performed similarly to NC2. In total it consists of 121 · 3 = 363 checks except for 27 already applied in
2
egeneracy conditions for a hexahedron

C0 NC1 NC2 NC3 NC4 NC5

eriment 36,230 14,066 11,675 11,546 11,487 11,484
of [28,29] 36,251 14,004 11,660 11,533 11,481a

periment 9915 7405 6881 6874 6870 6868

1st experiment, C0 implies the necessary condition V1, . . . ,V8 > 0 and in 2nd the condition V1, . . . ,V10 > 0.
[29], a computational procedure of seeking a minimum of J is employed immediately after NC3.
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Fig. 6. Prismatic ruled cell, a hexahedron with two adjacent faces 1234 and 4378 lying in one plane.
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NC2 and NC3. Generally, NC4 includes all preceding conditions, but successive implementation of the above
checks reduces the number of algebraic operations by factor of tens. For reliability, the same check is executed
when the cube face is partitioned into 100 · 100 squares and it is called NC5. After it only 3 more cells are
rejected. One observes that our data is in a good compliance with that of [28,29]. In the second experiment,
first all the 10 tetrahedra are checked and we call this condition C0. Further the same necessary conditions are
applied as in the first experiment.

Though the number of cells in the last column of Table 2 is not equal to the one where J > 0, nevertheless
we use it as if it is so. The experiments show that among the cells satisfying the condition V1, . . . ,V8 > 0 only
31.7% are non-folded and it was reported in [29]. The check of the 10 tetrahedra increases their share up to
69.1%. Thus, the latter is more robust. On the other hand it narrows the feasible set of non-folded cells by
40.2%.

Since the necessary conditions of the first experiment are rather close to the sufficient ones, they can be
employed when testing the non-degeneracy of a 3D grid. Probably, the condition NC5, requiring much more
time of execution, may be omitted. On the other hand, the initial use of the sufficient conditions of [28] reduces
significantly the time of the check.

In practical implementation on the domain boundary, there may be cells in the form of the ruled triangular
prism (see, e.g. [29] and Fig. 6), a hexahedron with two adjacent faces 1234 and 4378 lying in one plane. For
instance, it occurs when the edge 34 lies on the bounding edge and, therefore, the faces 1234 and 4378 lie on
the boundary surfaces of different families. On the edge 34, we have J = 0. Then, each of two corresponding
dodecahedrons has one degenerated corner tetrahedron, T2347 and T1348, because their vertices lie in one plane.
Nevertheless, such cells are admissible for modeling a physical phenomena. The non-degeneracy criteria for
the prismatic finite elements are considered in [40,29]. When generating a mesh, such cells must be treated
in a special manner. The functional should not be discretized on intentionally degenerated tetrahedra.

5. Discretization of functional

Noting that the Jacobian of the mapping x(n) is
ffiffiffiffiffiffiffiffiffiffi
det g
p

¼ rn � ðrg � rfÞ the functional (7) can be written in
the form1
1 Re
D ¼ 1

33=2

Z 1

0

ðG11g11 þ G22g22 þ G33g33 þ 2G12g12 þ 2G13g13 þ 2G23g23Þ
3=2

ffiffiffiffiffiffiffiffiffiffiffi
det G
p

rn � ðrg � rfÞ
dndgdf. ð10Þ
Let a structured mesh of Ni · Nj · Nk nodes be generated in the physical domain X. For convenience,
instead of the unit cube in parametric space n we consider a parallelepiped with the edges Ni � 1, Nj � 1,
Nk � 1. In every of Nc = (Ni � 1)(Nj � 1)(Nk � 1) cells the functional (10) is discretized by averaging its
approximation on the 10 tetrahedra forming two dodecahedrons depicted in Fig. 2(b) and (c). The resulting
difference function (or discrete functional) is
call that the mapping is assumed to be invertible and, therefore, everywhere J > 0.
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Dh ¼ 1

Nc

XNc

n¼1

X10

m¼1

1

10
½Em�n; ð11Þ
where [Em]n is the integrand in (10) computed for the mth tetrahedron in the nth cell. In Section 8, we will
demonstrate that the difference function Dh possesses an infinite barrier on the boundary of the set of
non-folded grids that prevents cells from degeneration.

If the set of non-folded grids composed of the hexahedral cells is not empty the system of the algebraic
equations written for the internal nodes
Rx ¼
oDh

oxn
¼ 0; Ry ¼

oDh

oyn

¼ 0; Rz ¼
oDh

ozn
¼ 0 ð12Þ
has at least one solution being a non-folded mesh. To find this solution we apply the unconstrained minimi-
zation taking a non-folded grid as an initial guess.
6. Minimization procedure

We use the minimization procedure for the spatial case which was also applied in [10,30]. Given a
non-folded mesh at the lth iteration step, the coordinates of the nth grid node at the l + 1th step are
obtained by using the quasi-Newton procedure in the sense that in the Hessian only the diagonal elements
are retained:
sRx þ
oRx

oxn
xlþ1

n � xl
n

� �
þ oRx

oyn

ylþ1
n � yl

n

� �
þ oRx

ozn
zlþ1

n � zl
n

� �
¼ 0;

sRy þ
oRy

oxn
xlþ1

n � xl
n

� �
þ oRy

oyn

ylþ1
n � yl

n

� �
þ oRy

ozn
zlþ1

n � zl
n

� �
¼ 0;

sRz þ
oRz

oxn
xlþ1

n � xl
n

� �
þ oRz

oyn

ylþ1
n � yl

n

� �
þ oRz

ozn
zlþ1

n � zl
n

� �
¼ 0;

ð13Þ
where s (s < 1) is the iteration parameter. The iterations are employed until the condition
max
n

rlþ1
n � rl

n

�� �� < e
is satisfied. Here e > 0 is sufficiently small. To implement the minimization procedure (13) one should compute
the first and second derivatives of the difference function Dh. We will derive these formulae in the following
section.
7. Computational formulae

Write the integrand in (10) in the form F = U/V, where
U ¼ c Gijgji

� �3=2 ¼ c G11g11 þ G22g22 þ G33g33 þ 2G12g12 þ 2G13g13 þ 2G23g23

� �3=2
;

V ¼ rn � ðrg � rfÞ; c ¼ 3�3=2
ffiffiffiffiffiffiffiffiffiffiffi
det G
p

.

To obtain the derivatives with respect to x, y, z we use the chain rule:
F x ¼
U x � FV x

V
; F y ¼

U y � FV y

V
; F z ¼

Uz � FV z

V
;

F xx ¼
Uxx � 2F xV x � FV xx

V
; F yy ¼

Uyy � 2F yV y � FV yy

V
; F zz ¼

U zz � 2F zV z � FV zz

V
;

F xy ¼ F yx ¼
Uxy � F xV y � F yV x � FV xy

V
; F xz ¼ F zx ¼

Uxz � F xV z � F zV x � FV xz

V
;

F yz ¼ F zy ¼
Uyz � F yV z � F zV y � FV yz

V
:

ð14Þ
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Differentiating the numerator U yields:
Ux ¼
3

2
c Gijgji

� �1=2
Gkl oglk

ox

¼ 3

2
c G11g11 þ G22g22 þ G33g33 þ 2G12g12 þ 2G13g13 þ 2G23g23

� �1=2

� G11 og11

ox
þ G22 og22

ox
þ G33 og33

ox
þ 2G12 og12

ox
þ 2G13 og13

ox
þ 2G23 og23

ox

� �
;

Uxx ¼
3

2
cðGijgjiÞ

�1=2 1

2
Gkl oglk

ox

� �2

þ GijgjiG
kl o2glk

ox2

" #
:

ð15Þ
By analogy we derive the expressions for Uy, Uyy, Uz, Uzz. The resulting formulae can be derived if in (15)
the variable x is replaced by y or z. The mixed derivative is
U xy ¼
3

2
cðGijgjiÞ

�1=2 1

2
Gij ogji

ox
Gkl oglk

oy
þ GijgjiG

kl o2glk

oxoy

� 	
ð16Þ
and similarly we derive Uxz and Uyz.
Consider the linear mapping x(n) which transforms the basic tetrahedron T1245 (see Fig. 3(b)) to the corner

tetrahedron T1245 of the dodecahedral cell (see Fig. 2(b)). The derivatives of the vector-valued function
r(n,g,f) are approximated as follows:
rn ¼ r2 � r1; rg ¼ r4 � r1; rf ¼ r5 � r1. ð17Þ

Recalling (8), we obtain the expressions for the metric coefficients gij:
g11 ¼ ðr2 � r1Þ2; g12 ¼ ðr2 � r1Þ � ðr4 � r1Þ; g13 ¼ ðr2 � r1Þ � ðr5 � r1Þ;
g22 ¼ ðr4 � r1Þ2; g23 ¼ ðr4 � r1Þ � ðr5 � r1Þ; g33 ¼ ðr5 � r1Þ2:
When computing the derivatives of U, in (15) and (16) we replace x, y, z by xi, yi, zi, where i is the vertex
number.

We have for vertex 1
og11

ox1

¼ 2ðx1 � x2Þ;
o

2g11

ox2
1

¼ 2;
og12

ox1

¼ 2x1 � x2 � x4;
o

2g12

ox2
1

¼ 2;

og13

ox1

¼ 2x1 � x2 � x5;
o

2g13

ox2
1

¼ 2;
og22

ox1

¼ 2ðx1 � x4Þ;
o

2g22

ox2
1

¼ 2;

og23

ox1

¼ 2x1 � x4 � x5;
o

2g23

ox2
1

¼ 2;
og33

ox1

¼ 2ðx1 � x5Þ;
o

2g33

ox2
1

¼ 2:

ð18Þ
The derivatives with respect to y1 and z1 are obtained if in (18) the variables xi are replaced by yi, zi. All mixed
derivatives of gij with respect to x1 and y1, x1 and z1, y1 and z1 are equal to 0.

We have for vertex 2
og11

ox2

¼ 2ðx2 � x1Þ;
o

2g11

ox2
2

¼ 2;
og12

ox2

¼ x4 � x1;
o

2g12

ox2
2

¼ 0;
og13

ox2

¼ x5 � x1;

o
2g13

ox2
2

¼ 0;
og22

ox2

¼ o
2g22

ox2
2

¼ 0;
og23

ox2

¼ o
2g23

ox2
2

¼ 0;
og33

ox2

¼ o
2g33

ox2
2

¼ 0.
We have for vertex 4
og11

ox4

¼ o2g11

ox2
4

¼ 0;
og12

ox4

¼ x2 � x1;
o2g12

ox2
4

¼ 0;
og13

ox4

¼ o2g13

ox2
4

¼ 0;
og22

ox4

¼ 2ðx4 � x1Þ;

o2g22

ox2
4

¼ 2;
og23

ox4

¼ x5 � x1;
o2g23

ox2
4

¼ 0;
og33

ox4

¼ o2g33

ox2
4

¼ 0.
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We have for vertex 5
og11

ox5

¼ o2g11

ox2
5

¼ 0;
og12

ox5

¼ o2g12

ox2
5

¼ 0;
og13

ox5

¼ x2 � x1;
o2g13

ox2
5

¼ 0;
og22

ox5

¼ o2g22

ox2
5

¼ 0;

og23

ox5

¼ x4 � x1;
o2g23

ox2
5

¼ 0;
og33

ox5

¼ 2ðx5 � x1Þ;
o2g33

ox2
5

¼ 2.
When differentiating the denominator V, we apply the differentiation rule for a determinant.
We have for vertex 1
oV
ox1

¼ o½rn � ðrg � rfÞ�
ox1

¼ o

ox1

x2 � x1 y2 � y1 z2 � z1

x4 � x1 y4 � y1 z4 � z1

x5 � x1 y5 � y1 z5 � z1

�������
������� ¼

�1 y2 � y1 z2 � z1

�1 y4 � y1 z4 � z1

�1 y5 � y1 z5 � z1

�������
�������

¼ y2ðz5 � z4Þ þ y4ðz2 � z5Þ þ y5ðz4 � z2Þ;
and similarly
oV
oy1

¼ z2ðx5 � x4Þ þ z4ðx2 � x5Þ þ z5ðx4 � x2Þ;
oV
oz1

¼ x2ðy5 � y4Þ þ x4ðy2 � y5Þ þ x5ðy4 � y2Þ.
One readily observes that all the second and mixed derivatives of V are equal to zero.
We have for vertex 2
oV
ox2

¼ ðy4 � y1Þðz5 � z1Þ � ðy5 � y1Þðz4 � z1Þ;
oV
oy2

¼ ðz4 � z1Þðx5 � x1Þ � ðz5 � z1Þðx4 � x1Þ;

oV
oz2

¼ ðx4 � x1Þðy5 � y1Þ � ðx5 � x1Þðy4 � y1Þ.
We have for vertex 4
oV
ox4

¼ ðy5 � y1Þðz2 � z1Þ � ðy2 � y1Þðz5 � z1Þ;
oV
oy4

¼ ðz5 � z1Þðx2 � x1Þ � ðz2 � z1Þðx5 � x1Þ;

oV
oz4

¼ ðx5 � x1Þðy2 � y1Þ � ðx2 � x1Þðy5 � y1Þ.
We have for vertex 5
oV
ox5

¼ ðy2 � y1Þðz4 � z1Þ � ðy4 � y1Þðz2 � z1Þ;
oV
oy5

¼ ðz2 � z1Þðx4 � x1Þ � ðz4 � z1Þðx2 � x1Þ;

oV
oz5

¼ ðx2 � x1Þðy4 � y1Þ � ðx4 � x1Þðy2 � y1Þ.
The integrand in (10) is invariant to the coordinate system n rotation, therefore the above formulae may be
applied to the remaining seven corner tetrahedra after the proper substitution of vertex number.

Further we derive the formulae to compute the metric coefficients gij and their derivatives for the basic tet-
rahedron T2457, see Fig. 3(c). To approximate the derivatives the formula of averaging over the volume is
applied. For instance, the derivative of a function f with respect to n is
fn ¼
1

V T

Z Z
ST

f dgdf.
Integration is performed over the bounding surface ST of the tetrahedron T2457 and VT is its volume. The func-
tion f and its derivative fn is assumed to be continuous inside the volume VT. The derivative fn in the left-hand
of the relation is taken at a point P 2 VT.

The surface integral is partitioned into four parts (number of tetrahedron facets) and the value of f on each
facet is assumed constant and equal to the averaged one over the values at three vertices. Therefore, one
derives
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fn ¼
f2 þ f4 þ f5

3V T

Z Z
S245

dgdfþ f2 þ f4 þ f7

3V T

Z Z
S247

dgdfþ f2 þ f5 þ f7

3V T

Z Z
S257

dgdf

þ f4 þ f5 þ f7

3V T

Z Z
S457

dgdf.
Since the area of the projection of each facet to the plane g–f is equal to 0.5 and the tetrahedron volume is
equal to 1/3, then, taking into account the sign of the facet area (defined by the facet inclination), we obtain
fn ¼
1

2
ðf7 þ f2 � f5 � f4Þ.
Similarly one derives an approximation for fg, ff. Therefore, the derivatives of r(n,g,f) are approximated as
follows:
rn ¼
1

2
ðr7 þ r2 � r5 � r4Þ; rg ¼

1

2
ðr7 þ r4 � r5 � r2Þ; rf ¼

1

2
ðr7 þ r5 � r2 � r4Þ. ð19Þ
Recalling (8), we obtain the expressions for the metric coefficients gij:
g11 ¼
1

4
ðr7 þ r2 � r5 � r4Þ2; g12 ¼

1

4
ðr7 þ r2 � r5 � r4Þ � ðr7 þ r4 � r5 � r2Þ;

g22 ¼
1

4
ðr7 þ r4 � r5 � r2Þ2; g13 ¼

1

4
ðr7 þ r2 � r5 � r4Þ � ðr7 þ r5 � r2 � r4Þ;

g33 ¼
1

4
ðr7 þ r5 � r2 � r4Þ2; g23 ¼

1

4
ðr7 þ r4 � r5 � r2Þ � ðr7 þ r5 � r2 � r4Þ:
We have for vertex 2
og11

ox2

¼ 1

2
ðx7 þ x2 � x5 � x4Þ;

o
2g11

ox2
2

¼ 1

2
;

og12

ox2

¼ 1

2
ðx4 � x2Þ;

o
2g12

ox2
2

¼ � 1

2
;

og22

ox2

¼ 1

2
ðx5 þ x2 � x7 � x4Þ;

o
2g22

ox2
2

¼ 1

2
;

og13

ox2

¼ 1

2
ðx5 � x2Þ;

o
2g13

ox2
2

¼ � 1

2
;

og33

ox2

¼ 1

2
ðx4 þ x2 � x7 � x5Þ;

o
2g33

ox2
2

¼ 1

2
;

og23

ox2

¼ 1

2
ðx2 � x7Þ;

o
2g23

ox2
2

¼ 1

2
:

ð20Þ
The derivatives with respect to y2 and z2 are obtained if in (20) the variables xi are replaced by yi, zi. All mixed
derivatives of gij with respect to x2 and y2, x2 and z2, y2 and z2 are equal to 0.

We have for vertex 4
og11

ox4

¼ 1

2
ðx5 þ x4 � x7 � x2Þ;

o2g11

ox2
4

¼ 1

2
;

og12

ox4

¼ 1

2
ðx2 � x4Þ;

o2g12

ox2
4

¼ � 1

2
;

og22

ox4

¼ 1

2
ðx7 þ x4 � x5 � x2Þ;

o
2g22

ox2
4

¼ 1

2
;

og13

ox4

¼ 1

2
ðx4 � x7Þ;

o
2g13

ox2
4

¼ 1

2
;

og33

ox4

¼ 1

2
ðx4 þ x2 � x7 � x5Þ;

o
2g33

ox2
4

¼ 1

2
;

og23

ox4

¼ 1

2
ðx5 � x4Þ;

o
2g23

ox2
4

¼ � 1

2
:

We have for vertex 5
og11

ox5

¼ 1

2
ðx5 þ x4 � x7 � x2Þ;

o2g11

ox2
5

¼ 1

2
;

og12

ox5

¼ 1

2
ðx5 � x7Þ;

o2g12

ox2
5

¼ 1

2
;

og22

ox5

¼ 1

2
ðx5 þ x2 � x7 � x4Þ;

o2g22

ox2
5

¼ 1

2
;

og13

ox5

¼ 1

2
ðx2 � x5Þ;

o2g13

ox2
5

¼ � 1

2
;

og33

ox5

¼ 1

2
ðx7 þ x5 � x2 � x4Þ;

o2g33

ox2
5

¼ 1

2
;

og23

ox5

¼ 1

2
ðx4 � x5Þ;

o2g23

ox2
5

¼ � 1

2
:
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We have for vertex 7
og11

ox7

¼ 1

2
ðx7 þ x2 � x5 � x4Þ;

o2g11

ox2
7

¼ 1

2
;

og12

ox7

¼ 1

2
ðx7 � x5Þ;

o2g12

ox2
7

¼ 1

2
;

og22

ox7

¼ 1

2
ðx7 þ x4 � x5 � x2Þ;

o2g22

ox2
7

¼ 1

2
;

og13

ox7

¼ 1

2
ðx7 � x4Þ;

o2g13

ox2
7

¼ 1

2
;

og33

ox7

¼ 1

2
ðx7 þ x5 � x2 � x4Þ;

o2g33

ox2
7

¼ 1

2
;

og23

ox7

¼ 1

2
ðx7 � x2Þ;

o2g23

ox2
7

¼ 1

2
:

When differentiating the denominator V we apply the differentiation rule for a determinant.
We have for vertex 2
oV
ox2

¼ o½rn � ðrg � rfÞ�
ox2

¼ 1

8

o

ox2

x7 þ x2 � x5 � x4 y7 þ y2 � y5 � y4 z7 þ z2 � z5 � z4

x7 þ x4 � x5 � x2 y7 þ y4 � y5 � y2 z7 þ z4 � z5 � z2

x7 þ x5 � x2 � x4 y7 þ y5 � y2 � y4 z7 þ z5 � z2 � z4

�������
�������

¼ 1

8

1 y7 þ y2 � y4 � y5 z7 þ z2 � z4 � z5

�1 y7 þ y4 � y5 � y2 z7 þ z4 � z5 � z2

�1 y7 þ y5 � y2 � y4 z7 þ z5 � z2 � z4

�������
������� ¼

1

2
½y4ðz7 � z5Þ þ y5ðz4 � z7Þ þ y7ðz5 � z4Þ�

and similarly

oV
oy2

¼ 1

2
½z4ðx7 � x5Þ þ z5ðx4 � x7Þ þ z7ðx5 � x4Þ�;

oV
oz2

¼ 1

2
½x4ðy7 � y5Þ þ x5ðy4 � y7Þ þ x7ðy5 � y4Þ�.

It is easily seen that all the second and mixed derivatives of V are equal to zero.
We have for vertex 4
oV
ox4

¼ 1

2
½y2ðz5 � z7Þ þ y5ðz7 � z2Þ þ y7ðz2 � x5Þ�;

oV
oy4

¼ 1

2
½z2ðx5 � x7Þ þ z5ðx7 � x2Þ þ z7ðx2 � x5Þ�;

oV
oz4

¼ 1

2
½x2ðy5 � y7Þ þ x5ðy7 � y2Þ þ x7ðy2 � y5Þ�.
We have for vertex 5
oV
ox5

¼ 1

2
½y2ðz7 � z4Þ þ y4ðz2 � z7Þ þ y7ðz4 � z2Þ�;

oV
oy5

¼ 1

2
½z2ðx7 � x4Þ þ z4ðx2 � x7Þ þ z7ðx4 � x2Þ�;

oV
oz5

¼ 1

2
½x2ðy7 � y4Þ þ x4ðy2 � y7Þ þ x7ðy4 � y2Þ�.
We have for vertex 7
oV
ox7

¼ 1

2
½y2ðz4 � z5Þ þ y4ðz5 � z2Þ þ y5ðz2 � z4Þ�;

oV
oy7

¼ 1

2
½z2ðx4 � x5Þ þ z4ðx5 � x2Þ þ z5ðx2 � x4Þ�;

oV
oz7

¼ 1

2
½x2ðy4 � y5Þ þ x4ðy5 � y2Þ þ x5ðy2 � y4Þ�.
For the second basic internal tetrahedron, which is transformed to the tetrahedron T1368, see Fig. 2(b), we
apply the above formulae with proper substitution of the vertex number.

Given the value of F and its derivatives at the vertices of the 10 tetrahedrons, we form the elements of the
system for the quasi-Newton procedure (13). Let the local vertex numbers 1,2, . . . , 8 in the cell correspond to
the global grid node numbers n1,n2, . . . ,n8. Then the value of F and its derivatives in vertex 1 of the tetrahe-
dron T1245 are added to Dh and elements of the system (13)
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Dh ¼ Dh þ F ; ½Rx�n1
¼ ½Rx�n1

þ F x; ½Ry �n1
¼ ½Ry �n1

þ F y ; ½Rz�n1
¼ ½Rz�n1

þ F z;

½Rxx�n1
¼ ½Rxx�n1

þ F xx; ½Ryy �n1
¼ ½Ryy �n1

þ F yy ; ½Rzz�n1
¼ ½Rzz�n1

þ F zz;

½Rxy �n1
¼ ½Rxy �n1

þ F xy ; ½Rxz�n1
¼ ½Rxz�n1

þ F xz; ½Ryz�n1
¼ ½Ryz�n1

þ F yz.
Here it is employed a notation drawn in programming languages. It implies, for instance, that a new value of
Dh is equal to Dh þ F . The values in vertices 2, 4, 5 of the tetrahedron are added to Dh and corresponding
elements ½Rx�n2

; . . . ; ½Rx�n4
; . . . ; ½Rx�n5

; . . . Similarly we treat F and its derivatives calculated at the vertices of
the 9 remaining tetrahedrons.

The method can be extended to unstructured grids in a straightforward manner. One needs only to define a
correspondence between a local vertex number in a cell and a global grid node number.

8. Barrier property of Dh

Prior to proceed to the consideration of the barrier property of the discrete functional, let us write the inte-
grand E of (10) in the form suitable for the analysis. Due to invariance of E to the orthogonal transformations
of the coordinates X, Y, Z, at any point of the parametric cube, it can be presented in a coordinate system
where G is a diagonal matrix, i.e.,
E ¼ ðtrðG
�1gÞÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðG�1gÞ
q ¼ ð~kigiiÞ

3=2ffiffiffiffiffiffiffiffiffiffi
det g
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

~k1
~k2

~k3

p ; ð21Þ
where ~ki are the eigenvalues of the matrix G�1.
The function Dh possesses a barrier property formulated as the following theorem:

Theorem. The function Dh possesses an infinite barrier on the boundary of the set of non-folded grids composed
of dodecahedral cells of the first or second kind.

Proof. Suppose some dodecahedral cell, say the first type (see Fig. 2(b)), degenerates. This is due to at least
one of five tetrahedrons, composing this cell, degenerates. It may be a corner tetrahedron, say T1245, or inter-
nal T2457. Consider the approximation of (21) for T1245 and T2457. Let the tetrahedron volume tend to 0, while
remaining positive, i.e., the Jacobian

ffiffiffiffiffiffiffiffiffiffi
det g
p

! 0. For Dh not to tend to +1, the approximation of the numer-
ator in (21) must tend to zero as well. In other words for the tetrahedron T1245
~k1g11 þ ~k2g22 þ ~k3g33 ¼ ~k1ðr2 � r1Þ2 þ ~k2ðr4 � r1Þ2 þ ~k3ðr5 � r1Þ2 ! 0
(due to invariance of the approximating formulae to the coordinate system rotation, a similar approximation
holds validity for any of the remaining 3 corner tetrahedrons) and for tetrahedron T2457
~k1ðr7 þ r2 � r5 � r4Þ2 þ ~k2ðr7 þ r4 � r5 � r2Þ2 þ ~k3ðr7 þ r5 � r2 � r4Þ2 ! 0.
Since all ~ki > 0, then all the tetrahedron vertices must shrink to a point. Each of T1245 and T2457 has a common
edge or face with the remaining 4 tetrahedrons. Therefore, the remaining tetrahedrons degenerate too and
their volume tends to 0. Analysis, similar to above, gives that for Dh not to tend to +1, all the vertices of
these 4 tetrahedrons must shrink to a point. Thus, all the cell vertices must shrink to a point. Looking through
sequentially all the cells we obtain that all the grid nodes will shrink to a point and this is in a contradiction
with boundary nodes redistribution on the domain boundary. For the second type cell (see Fig. 2c), the proof
is performed in the same manner. h

Due to the infinite barrier on the boundary of the set of non-folded grids, we may specify such a minimi-
zation parameter s in the procedure (13) that the mesh will remain non-folded.

In 3D, the barrier property of the discrete functional was applied in [10,30], while instead of the trilinear
mapping of the parametric cube to the hexahedron it is applied a linear transformation of the 24 basic tet-
rahedra (different from considered in the present paper) to the corresponding tetrahedra in the physical
domain.
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9. Boundary nodes redistribution

If when modeling the main problem, the boundary of the domain X moves and its shape changes substan-
tially, it is required to redistribute the mesh nodes over the boundary oX. In [41], for the 2D case it was sug-
gested such an algorithm, a constrained minimization of the functional. This algorithm allows to construct a
nearly conformal mapping (conformal one with an additional parameter, so called conformal modulus) and a
corresponding mesh in 2D domains [22]. Here we extend it to the 3D case.

In the suggested approach, the problem of the constrained minimization of Dh is solved subject to con-
straints defining the boundary oX. The following discrete functional is to be minimized
Dh
1 ¼

1

Nc

XNc

n¼1

X10

m¼1

1

10
½Em�n þ

X
rl2oX

klQðrlÞ ¼ Dh þ
X
l2L

klQl; ð22Þ
here the constraints Ql = Q(rl) = 0 define oX, kl are the Lagrange multipliers, and L is the set of the boundary
nodes. Since the function Q(r) is assumed piecewise differentiable, the difference function Dh

1 holds the infinite
barrier on the boundary of the set of non-folded grids composed of dodecahedral cells.

Now the system of algebraic equations, analogous to (12), will be supplemented with the constraints
Rx ¼
oDh

oxn
þ kn

oQn

oxn
¼ 0; Ry ¼

oDh

oyn

þ kn
oQn

oyn

¼ 0; Rz ¼
oDh

ozn
þ kn

oQn

ozn
¼ 0; Qn ¼ 0; ð23Þ
here kn = 0 if n 62L and constraints are defined for the boundary nodes n 2L.
Consider the method of minimizing the function (22) assuming the mesh to be non-folded at the lth step of

the iterative procedure. We use the quasi-Newton procedure to find the coordinates xlþ1
n ; ylþ1

n ; zlþ1
n of the nth

node at the l + 1th step:
sRx þ
oRx

oxn
ðxlþ1

n � xl
nÞ þ

oRx

oyn

ylþ1
n � yl

n

� �
þ oRx

ozn
zlþ1

n � zl
n

� �
þ oRx

okn
klþ1

n � kl
n

� �
¼ 0;

sRy þ
oRy

oxn
xlþ1

n � xl
n

� �
þ oRy

oyn

ylþ1
n � yl

n

� �
þ oRy

ozn
zlþ1

n � zl
n

� �
þ oRy

okn
klþ1

n � kl
n

� �
¼ 0;

sRz þ
oRz

oxn
xlþ1

n � xl
n

� �
þ oRz

oyn

ylþ1
n � yl

n

� �
þ oRz

ozn
zlþ1

n � zl
n

� �
þ oRz

okn
klþ1

n � kl
n

� �
¼ 0;

sQn þ
oQn

oxn
xlþ1

n � xl
n

� �
þ oQn

oyn

ylþ1
n � yl

n

� �
þ oQn

ozn
zlþ1

n � zl
n

� �
¼ 0;

ð24Þ
where, for instance,
oRx

oxn
¼ o

2Dh

ox2
n

þ kn
o

2Qn

ox2
n

;
oRx

oyn

¼ o
2Dh

oxnoyn

þ kn
o

2Qn

oxnoyn

;
oRx

ozn
¼ o

2Dh

oxnozn
þ kn

o
2Qn

oxnozn
;

oRx

okn
¼ oQn

oxn
;

and similarly the derivatives of Ry and Rz are defined.
Resolving the last equation of (24) about zlþ1

n � zl
n and substituting it in the three remaining equations, we

get the system
a11 a12 a13

a21 a22 a23

a31 a32 a33

0
B@

1
CA

xlþ1
n � xl

n

ylþ1
n � yl

n

klþ1
n � kl

n

0
B@

1
CA ¼

a14

a24

a34

0
B@

1
CA; ð25Þ
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where
a11 ¼
oRx

oxn
� a

oRx

ozn
; a12 ¼

oRx

oyn

� b
oRx

ozn
; a13 ¼

oRx

okn
¼ oQn

oxn
;

a21 ¼
oRy

oxn
� a

oRy

ozn
; a22 ¼

oRy

oyn

� b
oRy

ozn
; a23 ¼

oRy

okn
¼ oQn

oyn

;

a31 ¼
oRz

oxn
� a

oRz

ozn
; a32 ¼

oRz

oyn

� b
oRz

ozn
; a33 ¼

oRz

okn
¼ oQn

ozn
;

a14 ¼ s Qn

oRx

ozn

oQn

ozn

� ��1

� Rx

" #
¼ �sRx; a24 ¼ �sRy ; a34 ¼ �sRz;

a ¼ oQn

oxn

oQn

ozn

� ��1

; b ¼ oQn

oyn

oQn

ozn

� ��1

:

The system (25) is resolved about xlþ1
n ; ylþ1

n ; klþ1
n . Further, from the third equation of (24) we find zlþ1

n . If the
constraints are resolved about z in the form Q = z � q1(x,y) = 0, then
oQn

oxn
¼ � oq1n

oxn
;

oQn

oyn

¼ � oq1n

oyn

;
oQn

ozn
¼ 1
and the above formulas are simplified.
The constraints can be resolved about y in the form Q = y � q2(x,z) = 0, then
oQn

oxn
¼ � oq2n

oxn
;

oQn

oyn

¼ 1;
oQn

ozn
¼ � oq2n

ozn
.

Resolving the last equation of (24) about ylþ1
n � yl

n and substituting it in the three remaining equations, we get
the system similar to (25) with new coefficients:
a11 ¼
oRx

oxn
� a

oRx

oyn

; a12 ¼
oRx

ozn
� b

oRx

oyn

;

a21 ¼
oRy

oxn
� a

oRy

oyn

; a22 ¼
oRy

ozn
� b

oRy

oyn

;

a31 ¼
oRz

oxn
� a

oRz

oyn

; a32 ¼
oRz

ozn
� b

oRz

oyn

;

a ¼ � oq2n

oxn
; b ¼ � oq2n

ozn
:

Remaining coefficients do not change. The system is resolved about xlþ1
n ; zlþ1

n ; klþ1
n . Further, from the second

equation of (24), we find ylþ1
n .

The constraints can be resolved about x in the form Q = x � q3(y,z) = 0, then
oQn

oxn
¼ 1;

oQn

oyn

¼ � oq3n

oyn

;
oQn

ozn
¼ � oq3n

ozn
.

Resolving the last equation of (24) about xlþ1
n � xl

n and substituting it in the three remaining equations, we get
the system similar to (25) with new coefficients:
a11 ¼
oRx

oyn

� a
oRx

oxn
; a12 ¼

oRx

ozn
� b

oRx

oxn
;

a21 ¼
oRy

oyn

� a
oRy

oxn
; a22 ¼

oRy

ozn
� b

oRy

oxn
;

a31 ¼
oRz

oyn

� a
oRz

oxn
; a32 ¼

oRz

ozn
� b

oRz

oxn
;

a ¼ � oq3n

oyn

; b ¼ � oq3n

ozn
:
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Remaining coefficients do not change. The system is resolved about ylþ1
n ; zlþ1

n ; klþ1
n . Further, from the first

equation of (24), we find xlþ1
n .

These three forms of Q(r) can substitute for each other. On the part of oX where the tangent plane to oX is
nearly parallel to the plane x–y the boundary should be defined in the form z = q1(x,y). Where it is nearly
parallel to the plane x–z the boundary should be defined in the form y = q2(x,z), and where it is nearly parallel
to the plane y–z the boundary should be defined in the form x = q3(y,z). If we need to move the boundary
nodes along the bounding edge, being the intersection line between the different bounding surfaces, say
q1(x,y) and q2(x,z), then after determining xlþ1

n we find ylþ1
n from the equation of this edge q1(x,y) = q2(x,z).

If the boundary is defined parametrically in the form r(u,v) (u,v are parameters), then the following proce-
dure of the unconstrained minimization can be applied. The parameters (and node coordinates as well) at the
l + 1th step are updated by using the quasi-Newton procedure:
sRu þ Ruu ulþ1
n � ul

n

� �
þ Ruv vlþ1

n � vl
n

� �
¼ 0;

sRv þ Ruv ulþ1
n � ul

n

� �
þ Rvv vlþ1

n � vl
n

� �
¼ 0;

ð26Þ
where
Ru ¼
oR
oun
¼ Rx

oxn

oun
þ Ry

oyn

oun
þ Rz

ozn

oun
; Rv ¼

oR
ovn
¼ Rx

oxn

ovn
þ Ry

oyn

ovn
þ Rz

ozn

ovn
;

Ruu ¼
o2R
ou2

n

¼ Rx
o2xn

ou2
n

þ Rxx
oxn

oun
þ Rxy

oyn

oun
þ Rxz

ozn

oun

� �
oxn

oun
þ Ry

o2yn

ou2
n

þ Rxy
oxn

oun
þ Ryy

oyn

oun
þ Ryz

ozn

oun

� �
oyn

oun
þ Rz

o2zn

ou2
n

þ Rxz
oxn

oun
þ Ryz

oyn

oun
þ Rzz

ozn

oun

� �
ozn

oun
;

Rvv ¼
o

2R
ov2

n

¼ Rx
o

2xn

ov2
n

þ Rxx
oxn

ovn
þ Rxy

oyn

ovn
þ Rxz

ozn

ovn

� �
oxn

ovn
þ Ry

o
2yn

ov2
n

þ Rxy
oxn

ovn
þ Ryy

oyn

ovn
þ Ryz

ozn

ovn

� �
oyn

ovn
þ Rz

o2zn

ov2
n

þ Rxz
oxn

ovn
þ Ryz

oyn

ovn
þ Rzz

ozn

ovn

� �
ozn

ovn
;

Ruv ¼
o

2R
ounovn

¼ Rx
o

2xn

ounovn
þ Rxx

oxn

ovn
þ Rxy

oyn

ovn
þ Rxz

ozn

ovn

� �
oxn

oun
þ Ry

o
2yn

ounovn

þ Rxy
oxn

ovn
þ Ryy

oyn

ovn
þ Ryz

ozn

ovn

� �
oyn

oun
þ Rz

o2zn

ounovn
þ Rxz

oxn

ovn
þ Ryz

oyn

ovn
þ Rzz

ozn

ovn

� �
ozn

oun
:

Resolving the system (26) we have:
ulþ1
n ¼ ul

n � sðRuRvv � RvRuvÞ RuuRvv � R2
uv

� ��1
;

vlþ1
n ¼ vl

n � sðRvRuu � RuRuvÞ RuuRvv � R2
uv

� ��1
:

On the bounding edge, where only one parameter is variable, say u, its value at the l + 1th step is calculated
via the Newton procedure
sRu þ Ruu ulþ1
n � ul

n

� �
¼ 0.
From it, one obtains
ulþ1
n ¼ ul

n � sRu=Ruu.
10. Mesh condensing and orthogonalization near the boundary

Sometimes it is required that coordinate lines of the mesh approach orthogonally the boundary oX. It may
be done by specifying the metric G. The task in hand is the following. Moving away from oX to the interior of
X, several cell layers (called boundary cell layers) should be constructed with given node coordinates subject to
the orthogonality condition and, if necessary, grid surfaces condensing towards oX. Generally speaking, the
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orthogonality condition may be specified by the user himself. These boundary cell layers define the metric g

and, therefore, metric G = g. Afterward, it follows the transition cell layers where the metric G transforms
from given in the boundary cell layers to the Euclidian metric in the last cell layer that corresponds to obtain-
ing a quasi-uniform mesh in the interior of X.

Near oX, we construct the orthogonal mesh by the conventional marching algorithm. Let on the boundary
oX, given parametrically r = r(n,g), the mesh of quadrilateral cells be given. For definiteness, let this boundary
be the coordinate surface k = 1. To build the coordinate surface k = 2 one needs to know the inward normal
vector at the node (i, j, 1), see Fig. 7. The inward unit normal vector is
ni;j;1 ¼
rn � rg

jrn � rgj
.

Here rn and rg, the tangential vectors towards the surface along the coordinate lines n and g, respectively, are
computed via the finite-difference approximation for the derivatives
rn ¼ 0:5ðriþ1;j;1 � ri�1;j;1Þ; rg ¼ 0:5ðri;jþ1;1 � ri;j�1;1Þ.

Given the distance Dl between the nodes, we find the node coordinates on the next coordinate surface k = 2
ri;j;2 ¼ ri;j;1 þ ni;j;1Dl. ð27Þ

Further, we find the metric G in the first boundary cell layer. Moving layer by layer away from oX, we change
the parameter Dl from initial small in the first cell layer k = 1 to certain given in the cell layer k = k0 by a poly-
nomial law (generally the quadric dependence is sufficient) so as to obtain grid surfaces impaction towards oX.

Afterward, within several transition cell layers, say ktrn, the metric G should be transformed to Euclidian,
because in the interior of the physical domain, far from oX, generally, the quasi-uniform grid is required which
is defined through the cubic cells in space X, Y, Z. To this end, the (i + 1/2, j + 1/2,k0 + 1/2)th hexahedral cell
from the k0th boundary cell layer in space X, Y, Z should be transformed to a unit cube within ktrn cell layers.
Superpose the cube vertex 1 with the cell vertex 1, see Fig. 8. The remaining 7 cell vertices come to the cor-
respondent cube vertices using a linear interpolation within ktrn layers
ri ¼ rh
i þ

k � k0

ktrn

ðrc
i � rh

i Þ; i ¼ 2; . . . ; 8; k ¼ k0 þ 1; . . . ; k0 þ ktrn;
where rh
i ; r

c
i are the coordinates of the ith vertex of the hexahedron and cube, respectively. Due to the func-

tional (7) is invariant, it is not necessary to rotate the cube about the ruled cell and elongate/compress its
edges.

If when passing from the k0th cell layer to the k0 + 1th one, the coordinate line bends sharply, then this
bend can be smoothed. In the boundary cell layers the grid line direction (i.e., components of the vector defin-
ing the line direction) should be smoothly (linearly) changed from orthogonal to oX to the given direction in
i, j, 1

i+1 , j ,1
i– 1, j ,1

i, j +1 ,1

i, j – 1,1

n i,j, 1

Fig. 7. Grid orthogonalization near oX. ni,j,1 is the inward unit normal vector on oX.
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Fig. 8. Ruled cell of the last boundary layer k0 is transformed to a unit cube within ktrn cell layers.
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the k0th cell layer. Sometimes this direction may be given by the correspondent cell edge in the ko + 1th layer.
Such a technique should be used in the vicinity of a non-smoothness of oX (sharp break, corner, etc.) where
the orthogonal mesh cannot be constructed in principle.

We use the variational formulation 2, since beginning with the transition cell layer to define the metric G it
is only applied the cell-to-cell transformation regardless how the cells are settled relatively each other in space
X, Y, Z.

Here it may emerge a difficulty which has not been met in 2D considered in [21]. The cells of the boundary
layer in space X, Y, Z defining the metric G may be inverted. In other words, the matrix G is not positive def-
inite. This, in turn, leads to degeneration of the corresponding cells in the physical domain X. In Section 12, it
is presented an example of constructing the orthogonal mesh when for the cells of the boundary layer one
internal tetrahedra, T2457 or T1368, degenerates. As noted in Section 4 the non-degeneracy condition, where
the 10 tetrahedra are checked, narrows the feasible set of non-folded ruled cells. Then the functional (7) should
be discretized only on the 8 corner tetrahedra. On the other hand this condition cannot guarantee cell non-
degeneracy in much more events (see, e.g. Fig. 4). One of the ways to overcome this difficulty is to refuse
of mesh orthogonality near the boundary holding only condensation. Then in space X, Y, Z we construct a
parallelepipedal grid with a variable cell size in the normal direction to the boundary. Another way is to com-
bine these two conditions, i.e., to discretize the functional on the 8 tetrahedra in the boundary cell layer and on
the 10 tetrahedra in the interior of X. One more way is that the mesh on the bounding surface in the vicinity of
a strong curvature can be refined. Then the cells will not over-twist vastly and will be non-degenerate.

11. Mesh untangling

The minimization procedure (13) for the difference function Dh is applied provided that the initial mesh is
non-folded. In a domain of complicated geometry, construction of the initial non-folded mesh is a separate
problem. In 2D, generally, it is used a penalization term for the inverted or non-convex quadrilateral cells
(see, e.g. [8,30,42]). For instance in [30], when treating the functional (5) in the cells where J is negative, its
value is replaced by a small positive value. Since J is in the denominator of the integrand, the discrete func-
tional is penalized in the cell being a degenerate or non-convex quadrilateral. In 2D, this technique is success-
ful. However, the 3D analog of the penalization algorithm of [30] did not ensure mesh untangling even if X is
the simplest cubic domain with an initial tangled (folded) grid. In [37], it was suggested a regularization of the
functional (5) so as to pass smoothly through the infinite barrier while untangling a cell. We employ a 3D ana-
log of the regularized functional. In the denominator of (10), instead of J we use
J e ¼ 0:5J þ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ e2

p
; ð28Þ
here e > 0 is sufficiently small. When discretizing, as e it may be taken
e ¼ maxðmax jV negj; dÞ;

where Vneg is a negative algebraic volume of the tetrahedron and all inverted tetrahedra are examined.
d = 10�10 � 10�8 defines the lower boundary of e to avoid emergence of very large values. In the feasible set
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of non-folded grids, the regularized discrete functional is an infinite differentiable function with respect to its
arguments and is close to (11). While moving away from the feasible set, it tends to +1. The untangling pro-
cedure should be applied with the Euclidian metric G. After constructing a non-folded initial mesh, one may
apply the Riemannian metric G. In [43], a regularization similar to (28) is applied for the surface triangular grid
construction.

12. Examples of mesh

12.1. Wavelet domain

A mesh of 21 · 21 · 21 nodes is generated in the following domain: �1 6 x,y 6 1, the bottom boundary is
the plane z = �0.5, the upper boundary is the surface
Fig. 9.
interpo
zðx; yÞ ¼
0 if f 6 0 or c > p;

f otherwise,




where f = 1 + cosc, c ¼ a3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5x2 þ y2

p
, a = 3.

The initial mesh is generated using a transfinite interpolation, see the mesh on the bounding surface in
Fig. 9(a) and the coordinate surface i = 11 in the plane of symmetry x = 0 in Fig. 9(b). The same coordinate
surface of the mesh generated by the present method with the Euclidian metric G is shown in Fig. 10 and in the
next figures this surface will be shown as well. Here the functional minimum is Dh

min ¼ 2:25. If to compute the
metric g and define G = g, minimizing Dh produces the same mesh, while the absolute minimum of the discrete
functional is attained, i.e., Dh

min ¼ 1. Next calculation is executed applying grid condensing towards the upper
boundary, see Fig. 11. In the canonical domain, it is given a parallelepipedal mesh with surfaces impaction
towards the upper boundary by the parabolic law. Within the 10 cell layers the cell size in Z changes from
0.01 in the 1st upper layer to 1 in the 10th layer that corresponds to the cubic cell in space X, Y, Z, i.e.,
the metric G is Euclidian in the interior. The functional minimum is Dh

min ¼ 2:83. Further, the constrained
minimization (24) is used to move the nodes on the bounding surfaces and edges, see Fig. 12, with the same
metric G as in the preceding case. Here the functional Dh ¼ 2:17 is smaller than that of Fig. 11. If to execute
the minimizing procedure (24) within a long time, at some moment, due to truncation errors, the symmetry of
the problem is broken and the upper boundary nodes begin to go away of the sinusoid peak z(0,0) = 2,
because it is more ‘‘profitable’’ for the discrete functional. For the mesh depicted in Fig. 13, the functional
is Dh ¼ 1:67. In the vicinity of the corner (sinusoid peak), the coordinate surfaces behave likewise in 2D
X Y

Z

(a) (b)

Initial 21 · 21 · 21 mesh on the bounding surface (a) and coordinate surface i = 11 in the plane of symmetry x = 0 (b). Transfinite
lation is applied.



Fig. 10. Mesh generated with the Euclidian metric G.

Fig. 11. Mesh condensing towards the upper boundary. Mesh (a) and close-up (b).
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when constructing a conformal mapping. In [44], for the model example of the conformal mapping, it was
demonstrated and explained why the grid lines attract to the concave zone of the boundary and repel of
the convex part. In Section 9, it is noted that in 2D the constrained minimization produces a conformal trans-
formation. Thus, the algorithm of moving the boundary nodes should be applied carefully. Sometimes the iter-
ative procedure should not achieve convergence. To redistribute the boundary nodes, it is sufficient to execute
several tens iterations of the minimization procedure and further one should fix them. To avoid an undesirable
scattering of nodes shown in Fig. 13, one may define properly the metric G. As noted in Section 3, if to define
G equal g taken from the preceding stage of calculation, then the grid will not change. Further G is corrected in
a manner so as to improve the grid cell shape. To this end in [35,36] for 2D calculations, it is suggested to
employ the correcting functionals. One should note that the correcting functionals may lose invariance to
the transformations of the coordinates specified in Section 2.



Fig. 12. Mesh condensing and boundary nodes redistribution. Mesh (a) and close-up (b).

Fig. 13. The same in rather large number of iterations.
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Finally, in the example shown in Fig. 14, the mesh is condensed and orthogonalized towards the upper
boundary. The domain, where the f lines are orthogonal to the upper boundary, consists of five cell layers.
The ratio of the parameter Dl in (27) in the first cell layer to Dl in the fifth cell layer is equal to 0.1 and in
the fifth cell layer Dl = 0.01. Afterward, within the 10 transition layers the metric G transforms to Euclidian.
The nodes move on the all bounding surfaces and edges except the upper boundary, i.e., surface k = 21. It is
important to note that some dodecahedral cells near the upper boundary have one inverted internal tetrahe-
dron (T2457 or T1368, see Fig. 2(b) and (c)). That is why for this mesh the functional is discretized only on the 8
corner tetrahedra. The analogous event is observed for the initial mesh in Fig. 9 if to define G = g. Note that
one could refine the mesh on the boundary in such a subdomain so as to avoid over-twisting of the hexahedral
cells and then the internal tetrahedrons will not be inverted. The functional minimum is Dh

min ¼ 1:58. In
Fig. 14, it is seen that the grid lines bend sharply while passing from the last boundary cell layer to the
transition cell layer. This bend can be smoothed, see Fig. 15. Here, in the first three upper layers, the grid lines
are orthogonal to the boundary (more precisely to the correspondent coordinate surface), next from the fourth



Fig. 14. Mesh condensing and orthogonalization. Mesh (a) and close-up (b).

Fig. 15. The same plus smoothing the bend. Close-up.
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to seventh layer the f line inclination changes linearly to the inclination of the correspondent edge in the eighth
cell layer. The transition layer consists of the 8 cell layers and in the remaining five layers the metric G is
Euclidian. For this mesh Dh

min ¼ 1:44. Note that Dh
min for the quasi-uniform mesh, see Fig. 10, is greater than

that for the mesh of Figs. 14 and 15. This is because for the latter in the boundary cell layer the integrand E is
close to the minimum equal 1, meanwhile for the former, where G is Euclidian, the grid near the upper bound-
ary is far from the cubic mesh where the absolute minimum is attained. In all above cases the check of the
hexahedral cells for non-degeneracy has shown that they are non-folded. The computer code, executing this
check, includes the verification of the both sufficient and necessary conditions of cell non-degeneracy
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[28,29]. This code was kindly provided by Ushakova. The check based on using the necessary conditions
C0, . . . ,NC4 of the 1st experiment of Section 4 has shown the same result.

12.2. Interblade domain of turbine channel

The 81 · 41 · 31 mesh is generated in the interblade domain of a turbine channel. Initial data for the
boundary nodes was kindly provided by Koterov. The quasi-uniform mesh, produced with the Euclidian
Fig. 16. 81 · 41 · 31 mesh on the bounding surface. Quasi-uniform (a) and with grid lines orthogonalization and impaction towards the
blades (b).

j=21

i=31

k=15

Fig. 17. Coordinate surfaces in the interior of the physical domain.



Fig. 18. Bounding surface k = 31 and close-up in the vicinity of the points P and Q.
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metric G, is shown in Fig. 16(a). The boundary nodes move on the four bounding surfaces i = 1, 81, k = 1, 31
and four corresponding bounding edges. The bounding surface of the physical domain is a union of ruled sur-
faces given by the set of supporting points. Each ruled surface is given by four vertices in space. The boundary
nodes move on these surfaces. The nodes on the coordinate surfaces j = 1, 41 (they contain the blade surfaces)
are fixed. The functional is discretized on the 10 basic tetrahedra. The mesh generated with grid lines orthog-
onalization and impaction towards the blades is presented in Figs. 16(b) and 17. In Fig. 18, the bounding sur-
face k = 31 (indicated by the points A, B, C, and D in Fig. 16(a)) is shown. There are the 10 boundary cell
layers and 5 transition layers. The ratio of the parameter Dl in the 1st layer to Dl in the 10th layer is equal
to 0.1. For the quasi-uniform mesh Dh

min ¼ 2:09 and for the orthogonalized one Dh
min ¼ 1:29.

13. Other functionals

The functional (7) is not the only possible. An arbitrary function u(E), increasing monotonically when
E P 1 (for instance, a power function u(E) = Ea, a > 0), also enables to produce an arbitrary given mesh with
the metric G properly defined. If the absolute minimum of the functional (7) is attained, for another func-
tional, constructed via u(E), the absolute minimum is attained on the same mesh. If the absolute minimum
of (7) is not attained, minimizing another functional produces another mesh.
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When constructing the function (3) in 3D we did not use one more invariant of the metric h
I2 ¼
X3

i¼1

cofactor hii ¼ detðG�1gÞtrððG�1gÞ�1Þ ¼ det g
det G

trðg�1GÞ.
In [11,12], the functional depending on the ratio In�1/In are called the functional of smoothness. In [10,30],
it was employed a dimensional functional of this kind. However, rather an important property of the func-
tional is invariance to coordinate axes dilatation. That is why the functional should be non-dimensional.
Consider a non-dimensional ratio of the invariants abiding by [12] (p. 311)
In�1

I1�1=n
n

 !a

; a > 0.
With n = 3 substituting the expressions for the invariants I2, I3 we obtain
I2

I2=3
3

 !a

¼ det g
det G

trðg�1GÞ=ðdetðG�1gÞÞ2=3

� �a

¼ det g
det G

� �1=3

trðg�1GÞ
 !a

. ð29Þ
Note, the presence of the Jacobian in the denominator of the function (3) plays the fundamental role. When
discretizing the functional (7), owing to J in the denominator, the difference function Dh possesses the barrier
property which allows to generate non-folded meshes. The absence of J (or detg raised to some power) in the
denominator of (29) may cause some difficulties when using the invariant I2 to I3 ratio. It concerns, at least,
domains of complicated geometry.

14. Conclusion

A variational method of the structured grid generation based on minimizing the functional is considered. For
every cell the functional is approximated on the 10 tetrahedra forming two dodecahedral cells. The
non-degeneracy condition for a hexahedral cell is replaced by the non-degeneracy condition for the above 10
tetrahedra which is the check of the sign of the algebraic volume. The discrete functional possesses an infinite
barrier on the boundary of the set of non-folded dodecahedral cells that ensures generation of the non-folded
mesh composed of such cells. In the most practical applications the hexahedral grid with the same nodes is also
non-folded. The use of the control metric allows to generate an arbitrary given non-folded mesh and, in partic-
ular, to involve a supplementary governing for the cell shape and generate an orthogonal mesh with condensed
coordinate surfaces towards the boundary. The algorithm of the boundary node redistribution is suggested. The
present method can be extended to the unstructured mesh generation in the straightforward manner.

Acknowledgements

The author thanks Olga Ushakova, Institute of Mathematics and Mechanics, Ekaterinburg, with whom
Section 4 was coordinated, for fruitful discussions and providing the computer code of testing grid
non-degeneracy. This work was partially supported by the Department of Mathematical Sciences of the Rus-
sian Academy of Sciences (Program No. 3).

References

[1] A.F. Sidorov, On one algorithm for computing optimal difference grids, Proc. Steklov Math. Inst. 24 (1966) 147–151.
[2] A. Winslow, Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh, J. Comput. Phys. 1 (1966) 149–172.
[3] S.K. Godunov, G.P. Prokopov, On computation of conformal transformations and construction of difference meshes, USSR

Comput. Math. Math. Phys. 7 (1967) 209.
[4] S.K. Godunov, G.P. Prokopov, The use of moving meshes in gas-dynamics calculations, USSR Comput. Math. Math. Phys. 12

(1972) 182.
[5] P.P. Belinskii, S.K. Godunov, Yu.B. Ivanov, I.K. Yanenko, The use of a class of quasiconformal mappings to construct difference

grids in domains with curvilinear boundaries, USSR Comput. Math. Math. Phys. 15 (6) (1975) 131–139.
[6] J.U. Brackbill, J.S. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys. 46 (1982) 342–368.



B.N. Azarenok / Journal of Computational Physics 218 (2006) 720–747 747
[7] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin, Numerical Grid Generation, North-Holland, New York, 1985.
[8] O.-P. Jaquotte, A mechanical model for a new grid generation method in computational fluid dynamics, Comp. Meth. Appl. Mech.

Eng. 66 (6) (1988) 323–338.
[9] S.A. Ivanenko, A.A. Charakhch’yan, Curvilinear grids of convex quadrilaterals, USSR Comput. Math. Math. Phys. 28 (2) (1988)

126–133.
[10] S.A. Ivanenko, Adaptive-Harmonic Grid Generation, Computing Center of Russian Academy of Sciences, Moscow, 1997.
[11] V.D. Liseikin, On generation of regular grids on n-dimensional surfaces, USSR Comput. Math. Math. Phys. 31 (11) (1991) 47–57.
[12] V.D. Liseikin, Grid Generation Methods, Springer-Verlag, New York, 1999.
[13] P. Knupp, S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, FL, 1993.
[14] J.F. Thompson, B.K. Soni, N.P. Weatherill (Eds.), Handbook of Grid Generation, CRC Press, Boca Raton, FL, 1999.
[15] S.A. Ivanenko, Selected Chapters on Grid Generation and Applications, Dorodnicyn Computing Centre of Russian Academy of

Sciences, Moscow, 2004.
[16] O.V. Ushakova (Ed.), Advances in Grid Generation, Nova Science Publishers, New York, 2005.
[17] T.I. Serezhnikova, A.F. Sidorov, O.V. Ushakova, On one method of construction of optimal curvilinear grids and its applications,

Sov. J. Numer. Anal. Math. Model. 4 (2) (1989) 137–155.
[18] S.K. Godunov, V.T. Zhukov, O.V. Feodoritova, An algorithm for construction of quasi-isometric grids in curvilinear quadrangular

regions, in: Proceedings of the 16th International Conference on Numerical Methods in Fluid Dynamics, Arcachon, France, July 6–
10, 1998, pp. 49–54.

[19] S.K. Godunov, V.T. Zhukov, O.V. Feodoritova, On one class of quasi-isometric grids, in: O.V. Ushakova (Ed.), Advances in Grid
Generation, Nova Science Publishers, New York, 2005 (Chapter 2).

[20] S.P. Spekreijse, Elliptic generation systems, in: J.F. Thompson, B.K. Soni, N.P. Weatherill (Eds.), Handbook of Grid Generation,
CRC Press, Boca Raton, Fl, 1999 (Chapter 4).

[21] S.A. Ivanenko, Control of cell shape in the construction of a grid, Comput. Math. Math. Phys. 40 (11) (2000) 1596–1616.
[22] S.A. Ivanenko, B.N. Azarenok, Grid optimization and adaptation, in: O.V. Ushakova (Ed.), Advances in Grid Generation, Nova

Science Publishers, New York, 2005 (Chapter 4).
[23] R. Schoen, S.T. Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265–278.
[24] F.T. Farrell, L.E. Jones, Some non-homeomorphic harmonic homotopy equivalences, Bull. Lond. Math. Soc. 28 (1996) 177–182.
[25] N.A. Bobylev, S.A. Ivanenko, I.G. Ismailov, Some remarks on homeomorphisms, Russ. Math. Notes 60 (4) (1996) 593–596.
[26] N.A. Bobylev, S.A. Ivanenko, A.V. Kazunin, Piecewise smooth homeomorphisms of bounded domains and their applications to the

theory of grids, Comp. Math. Math. Phys. 43 (6) (2003) 772–781.
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